2.2 Definitions and Biconditional Statements

Goals:

- Recognize and use definitions.
- Recognize and use biconditional statements.

Vocabulary:
Perpendicular lines - two lines that intersect to form a right angle (\perp)
Line perpendicular to a plane - a line that intersects the plane in a point and is perpendicular to every line in the plane that intersects it.

Biconditional statement - statement that contains the phrase "if and only if" (iff)

Example 1 Using Definitions

Decide whether each statement about the diagram is true. Explain your answer using the definitions you have learned.
a. $\angle K L J$ and $\angle K J L$ are complementary.
b. $\overleftrightarrow{K L}$ and $\overleftrightarrow{L J}$ are perpendicular.

c. $\angle M K J$ is a right angle.
a. True - complementary: add up to $90^{\circ} \quad(36+54=90)$
b. False-perpendicular form 90° angle ($\angle M_{L J}=36^{\circ}$)
c. True -right is $90^{\circ}\left(\angle \mathrm{MKJ}=90^{\circ}\right.$ it is vertical to
(V) Checkpoint Use the diagram in Example 1 to decide whether the statement is true. Explain your answer using the definitions you have learned.

1. $\angle K J L$ is an acute angle.
True
acute is between $0-90^{\circ}$ $\angle R J L=54^{\circ}$
2. Point N is in the interior of $\angle K L J$.
False
interior is inside point N is outside
LKLJ.

Example 2 Rewriting a Biconditional Statement
Rewrite the following biconditional statement as a conditional statement and its converse.
An angle is a straight angle if and only if its measure is 180°.
Conditional Statement:
If an angle measures 180 degrees then it is a straight angle.

Converse:

If an angle is a straight angle then it measures 180 degrees.

Example 4 Writing a Biconditional Statement

Each of the following statements is true. Write the converse of each statement and decide whether the converse is true or false. If the converse is true, combine it with the original statement to form a true biconditional statement. If the converse is false, state a counterexample.
a. If $\sqrt{x}=1$, then $x=1$.
b. If two angles are vertical angles, then they are congruent.
a. Converse: If $x=1$, then $\sqrt{x}=1$

Converse is True
Biconditional: $\sqrt{x}=1$ if and only if $x=1$.
b. Converse: If two angles are congruent, then they are vertical angles.

Converse is False
Counterexample:

- Checkpoint Complete the following exercises.

3. Rewrite the following biconditional statement as a conditional statement and its converse.
Two angles are supplementary if and only if the sum of their measures is 180°.
If 2 angles are supplementary, then the sum of their measures is 180°.

If the sum of the measures of 2 angles is 180°, then the angles are supplementary.
4. Consider the following statement: Two segments are congruent if and only if they have the same length.
a. Is the statement biconditional? yes (if and only if)
b. Is the statement true or false? True

If 2 segments are congruent, then they have the
same length.
If 2 segments have the same length, then they
are congruent. are congruent.

