5.1 Perpendiculars and Bisectors

Goals:

- Use properties of perpendicular bisectors.
- Use properties of angle bisectors to identify equal distances.

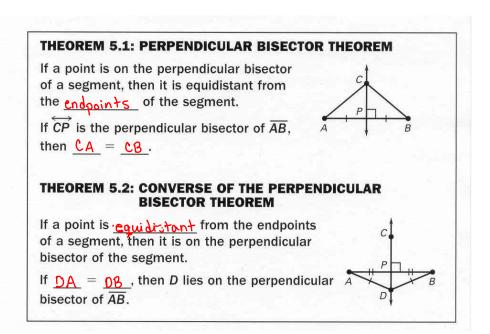
Vocabulary:

Perpendicular bisector – segment, ray, line, or plane that is perpendicular to a segment at its midpoint

Equidistant from two points – a point is equidistant from two points if its distance from each point is the same

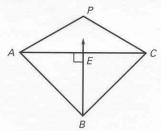
Distance from a point to a line – the length of the perpendicular segment from the point to the line

Equidistant form two lines – a point is equidistant from two lines when the point is the same distance form one line as it is from another line.



In the diagram shown, \overrightarrow{BE} is the perpendicular bisector of \overline{AC} .

- a. What segment lengths are equal?
- **b.** $\overline{AP} \cong \overline{CP}$. What can you conclude about point P?



Solution

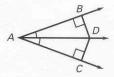
a. Because \overrightarrow{BE} bisects \overrightarrow{AC} , $\overrightarrow{AE} = \underline{CE}$. Because B is on the perpendicular bisector of \overline{AC} , you can use the <u>Perpendicular Bisector</u> Theorem to conclude that AB = BC

b. Because $\overline{AP}\cong \overline{CP}$, $AP=\underline{CP}$. Using the <u>Converse</u> of the Perpendicular Bisector Theorem, you can conclude that P lies on BE

THEOREM 5.3: ANGLE BISECTOR THEOREM

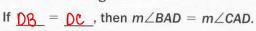
If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle.

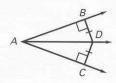
If $m \angle BAD = m \angle CAD$, then DB = DC.



THEOREM 5.4: CONVERSE OF THE ANGLE BISECTOR THEOREM

If a point is in the interior of an angle and is equidistant from the Sides of the angle, then it lies on the bisector of the angle.





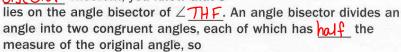
Example 2 Using Angle Bisectors

Baseball Field Use the diagram of the baseball infield shown at the right. What can you conclude about the measure of $\angle SHF$?

Solution

From the diagram, you know that point \underline{S} is in the interior of $\angle THF$ and $ST = \underline{SF}$.

From the Converse of the Angle Bisector Theorem, you know that S

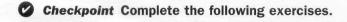


Third

base, T

$$m\angle SHF = \frac{96^{\circ}}{2} = 45^{\circ}.$$

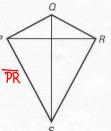
Answer The measure of $\angle SHF$ is $\underline{45}^{\circ}$.



1. In the diagram, $\overline{PQ} \cong \overline{RQ}$. What conclusion can you make about point Q? Can you conclude that S is on the perpendicular bisector of \overline{PR} ? Explain.

Q is on the perpendicular bisector of PR

No-we don't Know if PS=RS



Second

base, S

Pitcher's mound, M

Home, H

First

base, F

In the diagram, D is on the bisector of ∠ABC. What is DC? Explain.

$$AD = CD$$
 and since $AO = 6$
 $CD = 6$

